MakeItFrom.com
Menu (ESC)

N06035 Nickel vs. C61000 Bronze

N06035 nickel belongs to the nickel alloys classification, while C61000 bronze belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06035 nickel and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
29 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 84
42
Shear Strength, MPa 440
280 to 300
Tensile Strength: Ultimate (UTS), MPa 660
390 to 460
Tensile Strength: Yield (Proof), MPa 270
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 340
220
Maximum Temperature: Mechanical, °C 1030
210
Melting Completion (Liquidus), °C 1440
1040
Melting Onset (Solidus), °C 1390
990
Specific Heat Capacity, J/kg-K 450
420
Thermal Expansion, µm/m-K 13
18

Otherwise Unclassified Properties

Base Metal Price, % relative 60
29
Density, g/cm3 8.4
8.5
Embodied Carbon, kg CO2/kg material 10
3.0
Embodied Energy, MJ/kg 140
49
Embodied Water, L/kg 330
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 170
100 to 160
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
13 to 15
Strength to Weight: Bending, points 20
14 to 16
Thermal Shock Resistance, points 17
14 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.4
6.0 to 8.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 32.3 to 34.3
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
90.2 to 94
Iron (Fe), % 0 to 2.0
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 7.6 to 9.0
0
Nickel (Ni), % 51.1 to 60.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tungsten (W), % 0 to 0.6
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5