MakeItFrom.com
Menu (ESC)

N06035 Nickel vs. C96600 Copper

N06035 nickel belongs to the nickel alloys classification, while C96600 copper belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06035 nickel and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
140
Elongation at Break, % 34
7.0
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 84
52
Tensile Strength: Ultimate (UTS), MPa 660
760
Tensile Strength: Yield (Proof), MPa 270
480

Thermal Properties

Latent Heat of Fusion, J/g 340
240
Maximum Temperature: Mechanical, °C 1030
280
Melting Completion (Liquidus), °C 1440
1180
Melting Onset (Solidus), °C 1390
1100
Specific Heat Capacity, J/kg-K 450
400
Thermal Expansion, µm/m-K 13
15

Otherwise Unclassified Properties

Base Metal Price, % relative 60
65
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 10
7.0
Embodied Energy, MJ/kg 140
100
Embodied Water, L/kg 330
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
47
Resilience: Unit (Modulus of Resilience), kJ/m3 170
830
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 20
21
Thermal Shock Resistance, points 17
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.4
0
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 32.3 to 34.3
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
63.5 to 69.8
Iron (Fe), % 0 to 2.0
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 7.6 to 9.0
0
Nickel (Ni), % 51.1 to 60.2
29 to 33
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Tungsten (W), % 0 to 0.6
0
Vanadium (V), % 0 to 0.2
0
Residuals, % 0
0 to 0.5