MakeItFrom.com
Menu (ESC)

N06035 Nickel vs. WE43A Magnesium

N06035 nickel belongs to the nickel alloys classification, while WE43A magnesium belongs to the magnesium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06035 nickel and the bottom bar is WE43A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
44
Elongation at Break, % 34
5.2 to 5.4
Fatigue Strength, MPa 200
85 to 120
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 84
17
Shear Strength, MPa 440
160
Tensile Strength: Ultimate (UTS), MPa 660
250 to 270
Tensile Strength: Yield (Proof), MPa 270
160 to 170

Thermal Properties

Latent Heat of Fusion, J/g 340
330
Maximum Temperature: Mechanical, °C 1030
180
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
570
Specific Heat Capacity, J/kg-K 450
960
Thermal Expansion, µm/m-K 13
27

Otherwise Unclassified Properties

Base Metal Price, % relative 60
34
Density, g/cm3 8.4
1.9
Embodied Carbon, kg CO2/kg material 10
28
Embodied Energy, MJ/kg 140
250
Embodied Water, L/kg 330
910

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
12
Resilience: Unit (Modulus of Resilience), kJ/m3 170
280 to 310
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
61
Strength to Weight: Axial, points 22
36 to 39
Strength to Weight: Bending, points 20
46 to 48
Thermal Shock Resistance, points 17
15 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 32.3 to 34.3
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0 to 0.030
Iron (Fe), % 0 to 2.0
0 to 0.010
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 0
89.5 to 93.5
Manganese (Mn), % 0 to 0.5
0 to 0.15
Molybdenum (Mo), % 7.6 to 9.0
0
Nickel (Ni), % 51.1 to 60.2
0 to 0.0050
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0 to 0.010
Sulfur (S), % 0 to 0.015
0
Tungsten (W), % 0 to 0.6
0
Unspecified Rare Earths, % 0
2.4 to 4.4
Vanadium (V), % 0 to 0.2
0
Yttrium (Y), % 0
3.7 to 4.3
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3