MakeItFrom.com
Menu (ESC)

N06058 Nickel vs. C18200 Copper

N06058 nickel belongs to the nickel alloys classification, while C18200 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N06058 nickel and the bottom bar is C18200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 45
11 to 40
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 86
44
Shear Strength, MPa 600
210 to 320
Tensile Strength: Ultimate (UTS), MPa 860
310 to 530
Tensile Strength: Yield (Proof), MPa 410
97 to 450

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1540
1080
Melting Onset (Solidus), °C 1490
1070
Specific Heat Capacity, J/kg-K 420
390
Thermal Conductivity, W/m-K 9.8
320
Thermal Expansion, µm/m-K 12
18

Otherwise Unclassified Properties

Base Metal Price, % relative 70
31
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 13
2.6
Embodied Energy, MJ/kg 170
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
43 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 370
40 to 860
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 27
9.6 to 16
Strength to Weight: Bending, points 23
11 to 16
Thermal Diffusivity, mm2/s 2.6
93
Thermal Shock Resistance, points 23
11 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 20 to 23
0.6 to 1.2
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 0 to 0.5
98.6 to 99.4
Iron (Fe), % 0 to 1.5
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 19 to 21
0
Nickel (Ni), % 52.2 to 61
0
Nitrogen (N), % 0.020 to 0.15
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Tungsten (W), % 0 to 0.3
0