MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. 295.0 Aluminum

N06060 nickel belongs to the nickel alloys classification, while 295.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06060 nickel and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 45
2.0 to 7.2
Fatigue Strength, MPa 230
44 to 55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
27
Shear Strength, MPa 490
180 to 230
Tensile Strength: Ultimate (UTS), MPa 700
230 to 280
Tensile Strength: Yield (Proof), MPa 270
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1510
640
Melting Onset (Solidus), °C 1450
530
Specific Heat Capacity, J/kg-K 430
880
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
10
Density, g/cm3 8.7
3.0
Embodied Carbon, kg CO2/kg material 12
7.9
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 280
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 180
77 to 340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 22
21 to 26
Strength to Weight: Bending, points 20
27 to 32
Thermal Shock Resistance, points 19
9.8 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.4 to 95.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0.25 to 1.3
4.0 to 5.0
Iron (Fe), % 0 to 14
0 to 1.0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.5
0 to 0.35
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
0
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.7 to 1.5
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15