MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. 3005 Aluminum

N06060 nickel belongs to the nickel alloys classification, while 3005 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06060 nickel and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 45
1.1 to 16
Fatigue Strength, MPa 230
53 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 490
84 to 150
Tensile Strength: Ultimate (UTS), MPa 700
140 to 270
Tensile Strength: Yield (Proof), MPa 270
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1510
660
Melting Onset (Solidus), °C 1450
640
Specific Heat Capacity, J/kg-K 430
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.7
2.8
Embodied Carbon, kg CO2/kg material 12
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 280
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 180
18 to 390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 22
14 to 27
Strength to Weight: Bending, points 20
21 to 33
Thermal Shock Resistance, points 19
6.0 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
95.7 to 98.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0 to 0.1
Copper (Cu), % 0.25 to 1.3
0 to 0.3
Iron (Fe), % 0 to 14
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 1.5
1.0 to 1.5
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
0
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15