MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. 4006 Aluminum

N06060 nickel belongs to the nickel alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06060 nickel and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 45
3.4 to 24
Fatigue Strength, MPa 230
35 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 490
70 to 91
Tensile Strength: Ultimate (UTS), MPa 700
110 to 160
Tensile Strength: Yield (Proof), MPa 270
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1510
640
Melting Onset (Solidus), °C 1450
620
Specific Heat Capacity, J/kg-K 430
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.0
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 12
8.1
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 280
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 180
28 to 130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
11 to 16
Strength to Weight: Bending, points 20
19 to 24
Thermal Shock Resistance, points 19
4.9 to 7.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
97.4 to 98.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0 to 0.2
Copper (Cu), % 0.25 to 1.3
0 to 0.1
Iron (Fe), % 0 to 14
0.5 to 0.8
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.5
0 to 0.050
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
0
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.8 to 1.2
Sulfur (S), % 0 to 0.0050
0
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15