MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. 8090 Aluminum

N06060 nickel belongs to the nickel alloys classification, while 8090 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06060 nickel and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
67
Elongation at Break, % 45
3.5 to 13
Fatigue Strength, MPa 230
91 to 140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
25
Tensile Strength: Ultimate (UTS), MPa 700
340 to 490
Tensile Strength: Yield (Proof), MPa 270
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1510
660
Melting Onset (Solidus), °C 1450
600
Specific Heat Capacity, J/kg-K 430
960
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 65
18
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 12
8.6
Embodied Energy, MJ/kg 160
170
Embodied Water, L/kg 280
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 180
340 to 1330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
34 to 49
Strength to Weight: Bending, points 20
39 to 50
Thermal Shock Resistance, points 19
15 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
93 to 98.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0 to 0.1
Copper (Cu), % 0.25 to 1.3
1.0 to 1.6
Iron (Fe), % 0 to 14
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0
0.6 to 1.3
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
0
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0
0 to 0.15