MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. EN AC-21200 Aluminum

N06060 nickel belongs to the nickel alloys classification, while EN AC-21200 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06060 nickel and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 45
3.9 to 6.2
Fatigue Strength, MPa 230
110 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
27
Tensile Strength: Ultimate (UTS), MPa 700
410 to 440
Tensile Strength: Yield (Proof), MPa 270
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1510
660
Melting Onset (Solidus), °C 1450
550
Specific Heat Capacity, J/kg-K 430
880
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
10
Density, g/cm3 8.7
3.0
Embodied Carbon, kg CO2/kg material 12
8.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 280
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 180
500 to 930
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 22
38 to 40
Strength to Weight: Bending, points 20
41 to 43
Thermal Shock Resistance, points 19
18 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
93.3 to 95.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0.25 to 1.3
4.0 to 5.0
Iron (Fe), % 0 to 14
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0.15 to 0.5
Manganese (Mn), % 0 to 1.5
0.2 to 0.5
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
0 to 0.050
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1