MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. 3105 Aluminum

N06200 nickel belongs to the nickel alloys classification, while 3105 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06200 nickel and the bottom bar is 3105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
69
Elongation at Break, % 51
1.1 to 20
Fatigue Strength, MPa 290
39 to 95
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
26
Shear Strength, MPa 560
77 to 140
Tensile Strength: Ultimate (UTS), MPa 780
120 to 240
Tensile Strength: Yield (Proof), MPa 320
46 to 220

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1500
660
Melting Onset (Solidus), °C 1450
640
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 9.1
170
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
44
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
140

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.7
2.8
Embodied Carbon, kg CO2/kg material 12
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
2.6 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 240
15 to 340
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 25
12 to 24
Strength to Weight: Bending, points 22
20 to 31
Thermal Diffusivity, mm2/s 2.4
68
Thermal Shock Resistance, points 21
5.2 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
96 to 99.5
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0 to 0.2
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
0 to 0.3
Iron (Fe), % 0 to 3.0
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0 to 0.010
0.3 to 0.8
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.080
0 to 0.6
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.4
Residuals, % 0
0 to 0.15