MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. 6106 Aluminum

N06200 nickel belongs to the nickel alloys classification, while 6106 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06200 nickel and the bottom bar is 6106 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
69
Elongation at Break, % 51
9.1
Fatigue Strength, MPa 290
88
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
26
Shear Strength, MPa 560
170
Tensile Strength: Ultimate (UTS), MPa 780
290
Tensile Strength: Yield (Proof), MPa 320
220

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1500
660
Melting Onset (Solidus), °C 1450
610
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 9.1
190
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
49
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
160

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 12
8.3
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 310
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
24
Resilience: Unit (Modulus of Resilience), kJ/m3 240
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 25
29
Strength to Weight: Bending, points 22
35
Thermal Diffusivity, mm2/s 2.4
78
Thermal Shock Resistance, points 21
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
97.2 to 99.3
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0 to 0.2
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
0 to 0.25
Iron (Fe), % 0 to 3.0
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 0.010
0.050 to 0.2
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.080
0.3 to 0.6
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15