MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. 7116 Aluminum

N06200 nickel belongs to the nickel alloys classification, while 7116 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06200 nickel and the bottom bar is 7116 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
69
Elongation at Break, % 51
7.8
Fatigue Strength, MPa 290
160
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
26
Shear Strength, MPa 560
220
Tensile Strength: Ultimate (UTS), MPa 780
370
Tensile Strength: Yield (Proof), MPa 320
330

Thermal Properties

Latent Heat of Fusion, J/g 330
380
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1500
640
Melting Onset (Solidus), °C 1450
520
Specific Heat Capacity, J/kg-K 430
880
Thermal Conductivity, W/m-K 9.1
150
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
46
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
140

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.7
2.9
Embodied Carbon, kg CO2/kg material 12
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 310
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
28
Resilience: Unit (Modulus of Resilience), kJ/m3 240
790
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 25
35
Strength to Weight: Bending, points 22
39
Thermal Diffusivity, mm2/s 2.4
58
Thermal Shock Resistance, points 21
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
91.5 to 94.5
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
0.5 to 1.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 3.0
0 to 0.3
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0 to 0.010
0 to 0.050
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.080
0 to 0.15
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15