MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. Grade 18 Titanium

N06200 nickel belongs to the nickel alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06200 nickel and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 51
11 to 17
Fatigue Strength, MPa 290
330 to 480
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 84
40
Shear Strength, MPa 560
420 to 590
Tensile Strength: Ultimate (UTS), MPa 780
690 to 980
Tensile Strength: Yield (Proof), MPa 320
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 990
330
Melting Completion (Liquidus), °C 1500
1640
Melting Onset (Solidus), °C 1450
1590
Specific Heat Capacity, J/kg-K 430
550
Thermal Conductivity, W/m-K 9.1
8.3
Thermal Expansion, µm/m-K 12
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.7
4.5
Embodied Carbon, kg CO2/kg material 12
41
Embodied Energy, MJ/kg 160
670
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 240
1380 to 3110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 25
43 to 61
Strength to Weight: Bending, points 22
39 to 49
Thermal Diffusivity, mm2/s 2.4
3.4
Thermal Shock Resistance, points 21
47 to 67

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
2.5 to 3.5
Carbon (C), % 0 to 0.010
0 to 0.080
Chromium (Cr), % 22 to 24
0
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 3.0
0 to 0.25
Manganese (Mn), % 0 to 0.010
0
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.080
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4