MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. C61000 Bronze

N06200 nickel belongs to the nickel alloys classification, while C61000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06200 nickel and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 51
29 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84
42
Shear Strength, MPa 560
280 to 300
Tensile Strength: Ultimate (UTS), MPa 780
390 to 460
Tensile Strength: Yield (Proof), MPa 320
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 330
220
Maximum Temperature: Mechanical, °C 990
210
Melting Completion (Liquidus), °C 1500
1040
Melting Onset (Solidus), °C 1450
990
Specific Heat Capacity, J/kg-K 430
420
Thermal Conductivity, W/m-K 9.1
69
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
15
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
16

Otherwise Unclassified Properties

Base Metal Price, % relative 65
29
Density, g/cm3 8.7
8.5
Embodied Carbon, kg CO2/kg material 12
3.0
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 240
100 to 160
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 25
13 to 15
Strength to Weight: Bending, points 22
14 to 16
Thermal Diffusivity, mm2/s 2.4
19
Thermal Shock Resistance, points 21
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
6.0 to 8.5
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
90.2 to 94
Iron (Fe), % 0 to 3.0
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.010
0
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.080
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5