MakeItFrom.com
Menu (ESC)

N06200 Nickel vs. C86300 Bronze

N06200 nickel belongs to the nickel alloys classification, while C86300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N06200 nickel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 51
14
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 84
42
Tensile Strength: Ultimate (UTS), MPa 780
850
Tensile Strength: Yield (Proof), MPa 320
480

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1500
920
Melting Onset (Solidus), °C 1450
890
Specific Heat Capacity, J/kg-K 430
420
Thermal Conductivity, W/m-K 9.1
35
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 65
23
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
3.0
Embodied Energy, MJ/kg 160
51
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
100
Resilience: Unit (Modulus of Resilience), kJ/m3 240
1030
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 25
30
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 2.4
11
Thermal Shock Resistance, points 21
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
5.0 to 7.5
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 1.3 to 1.9
60 to 66
Iron (Fe), % 0 to 3.0
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 0.010
2.5 to 5.0
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 61.7
0 to 1.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.080
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0