MakeItFrom.com
Menu (ESC)

N06219 Nickel vs. AISI 444 Stainless Steel

N06219 nickel belongs to the nickel alloys classification, while AISI 444 stainless steel belongs to the iron alloys. They have a modest 25% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N06219 nickel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 48
23
Fatigue Strength, MPa 270
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 79
78
Shear Strength, MPa 520
300
Tensile Strength: Ultimate (UTS), MPa 730
470
Tensile Strength: Yield (Proof), MPa 300
310

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 980
930
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 10
23
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 60
15
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 11
3.4
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 290
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
95
Resilience: Unit (Modulus of Resilience), kJ/m3 230
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 24
17
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 2.7
6.2
Thermal Shock Resistance, points 21
16

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.050
0 to 0.025
Chromium (Cr), % 18 to 22
17.5 to 19.5
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 2.0 to 4.0
73.3 to 80.8
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 7.0 to 9.0
1.8 to 2.5
Nickel (Ni), % 60.8 to 72.3
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0.7 to 1.1
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.5
0.2 to 0.8