MakeItFrom.com
Menu (ESC)

N06219 Nickel vs. CC495K Bronze

N06219 nickel belongs to the nickel alloys classification, while CC495K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06219 nickel and the bottom bar is CC495K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 48
7.0
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 79
37
Tensile Strength: Ultimate (UTS), MPa 730
240
Tensile Strength: Yield (Proof), MPa 300
120

Thermal Properties

Latent Heat of Fusion, J/g 330
180
Maximum Temperature: Mechanical, °C 980
140
Melting Completion (Liquidus), °C 1430
930
Melting Onset (Solidus), °C 1380
820
Specific Heat Capacity, J/kg-K 450
350
Thermal Conductivity, W/m-K 10
48
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
10

Otherwise Unclassified Properties

Base Metal Price, % relative 60
33
Density, g/cm3 8.5
9.0
Embodied Carbon, kg CO2/kg material 11
3.6
Embodied Energy, MJ/kg 140
58
Embodied Water, L/kg 290
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
14
Resilience: Unit (Modulus of Resilience), kJ/m3 230
68
Stiffness to Weight: Axial, points 13
6.2
Stiffness to Weight: Bending, points 23
17
Strength to Weight: Axial, points 24
7.3
Strength to Weight: Bending, points 21
9.4
Thermal Diffusivity, mm2/s 2.7
15
Thermal Shock Resistance, points 21
8.8

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 18 to 22
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
76 to 82
Iron (Fe), % 2.0 to 4.0
0 to 0.25
Lead (Pb), % 0
8.0 to 11
Manganese (Mn), % 0 to 0.5
0 to 0.2
Molybdenum (Mo), % 7.0 to 9.0
0
Nickel (Ni), % 60.8 to 72.3
0 to 2.0
Phosphorus (P), % 0 to 0.020
0 to 0.1
Silicon (Si), % 0.7 to 1.1
0 to 0.010
Sulfur (S), % 0 to 0.010
0 to 0.1
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 2.0