MakeItFrom.com
Menu (ESC)

N06219 Nickel vs. Grade 28 Titanium

N06219 nickel belongs to the nickel alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N06219 nickel and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 48
11 to 17
Fatigue Strength, MPa 270
330 to 480
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 79
40
Shear Strength, MPa 520
420 to 590
Tensile Strength: Ultimate (UTS), MPa 730
690 to 980
Tensile Strength: Yield (Proof), MPa 300
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 980
330
Melting Completion (Liquidus), °C 1430
1640
Melting Onset (Solidus), °C 1380
1590
Specific Heat Capacity, J/kg-K 450
550
Thermal Conductivity, W/m-K 10
8.3
Thermal Expansion, µm/m-K 12
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 60
36
Density, g/cm3 8.5
4.5
Embodied Carbon, kg CO2/kg material 11
37
Embodied Energy, MJ/kg 140
600
Embodied Water, L/kg 290
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 230
1370 to 3100
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 24
43 to 61
Strength to Weight: Bending, points 21
39 to 49
Thermal Diffusivity, mm2/s 2.7
3.4
Thermal Shock Resistance, points 21
47 to 66

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
2.5 to 3.5
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 18 to 22
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 2.0 to 4.0
0 to 0.25
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 7.0 to 9.0
0
Nickel (Ni), % 60.8 to 72.3
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.020
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0.7 to 1.1
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.5
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4