MakeItFrom.com
Menu (ESC)

N06219 Nickel vs. C33000 Brass

N06219 nickel belongs to the nickel alloys classification, while C33000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06219 nickel and the bottom bar is C33000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 48
7.0 to 60
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 79
40
Shear Strength, MPa 520
240 to 300
Tensile Strength: Ultimate (UTS), MPa 730
320 to 520
Tensile Strength: Yield (Proof), MPa 300
110 to 450

Thermal Properties

Latent Heat of Fusion, J/g 330
180
Maximum Temperature: Mechanical, °C 980
130
Melting Completion (Liquidus), °C 1430
940
Melting Onset (Solidus), °C 1380
900
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 10
120
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
29

Otherwise Unclassified Properties

Base Metal Price, % relative 60
24
Density, g/cm3 8.5
8.2
Embodied Carbon, kg CO2/kg material 11
2.7
Embodied Energy, MJ/kg 140
45
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
35 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 230
60 to 950
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 24
11 to 18
Strength to Weight: Bending, points 21
13 to 18
Thermal Diffusivity, mm2/s 2.7
37
Thermal Shock Resistance, points 21
11 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 18 to 22
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
65 to 68
Iron (Fe), % 2.0 to 4.0
0 to 0.070
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 7.0 to 9.0
0
Nickel (Ni), % 60.8 to 72.3
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.7 to 1.1
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
30.8 to 34.8
Residuals, % 0
0 to 0.4