MakeItFrom.com
Menu (ESC)

N06250 Nickel vs. 332.0 Aluminum

N06250 nickel belongs to the nickel alloys classification, while 332.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06250 nickel and the bottom bar is 332.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 46
1.0
Fatigue Strength, MPa 230
90
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
27
Shear Strength, MPa 500
190
Tensile Strength: Ultimate (UTS), MPa 710
250
Tensile Strength: Yield (Proof), MPa 270
190

Thermal Properties

Latent Heat of Fusion, J/g 320
530
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1490
580
Melting Onset (Solidus), °C 1440
530
Specific Heat Capacity, J/kg-K 440
880
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 8.6
2.8
Embodied Carbon, kg CO2/kg material 10
7.8
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 270
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 170
250
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 23
24
Strength to Weight: Bending, points 21
31
Thermal Shock Resistance, points 19
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
80.1 to 89
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0.25 to 1.3
2.0 to 4.0
Iron (Fe), % 7.4 to 19.4
0 to 1.2
Magnesium (Mg), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 10.1 to 12
0
Nickel (Ni), % 50 to 54
0 to 0.5
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.090
8.5 to 10.5
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5