MakeItFrom.com
Menu (ESC)

N06250 Nickel vs. SAE-AISI 1524 Steel

N06250 nickel belongs to the nickel alloys classification, while SAE-AISI 1524 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06250 nickel and the bottom bar is SAE-AISI 1524 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 46
14 to 22
Fatigue Strength, MPa 230
230 to 340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 82
73
Shear Strength, MPa 500
360 to 390
Tensile Strength: Ultimate (UTS), MPa 710
570 to 650
Tensile Strength: Yield (Proof), MPa 270
320 to 540

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 980
400
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1440
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 55
1.9
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 10
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 270
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
84 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
270 to 760
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 23
20 to 23
Strength to Weight: Bending, points 21
19 to 21
Thermal Shock Resistance, points 19
18 to 21

Alloy Composition

Carbon (C), % 0 to 0.020
0.19 to 0.25
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0.25 to 1.3
0
Iron (Fe), % 7.4 to 19.4
98 to 98.5
Manganese (Mn), % 0 to 1.0
1.4 to 1.7
Molybdenum (Mo), % 10.1 to 12
0
Nickel (Ni), % 50 to 54
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.090
0
Sulfur (S), % 0 to 0.0050
0 to 0.050
Tungsten (W), % 0.25 to 1.3
0