MakeItFrom.com
Menu (ESC)

N06455 Nickel vs. C71520 Copper-nickel

N06455 nickel belongs to the nickel alloys classification, while C71520 copper-nickel belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06455 nickel and the bottom bar is C71520 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
140
Elongation at Break, % 47
10 to 45
Poisson's Ratio 0.29
0.33
Rockwell B Hardness 90
35 to 86
Shear Modulus, GPa 82
51
Shear Strength, MPa 550
250 to 340
Tensile Strength: Ultimate (UTS), MPa 780
370 to 570
Tensile Strength: Yield (Proof), MPa 330
140 to 430

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 960
260
Melting Completion (Liquidus), °C 1510
1170
Melting Onset (Solidus), °C 1450
1120
Specific Heat Capacity, J/kg-K 430
400
Thermal Conductivity, W/m-K 10
32
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
5.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
5.8

Otherwise Unclassified Properties

Base Metal Price, % relative 65
40
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 12
5.0
Embodied Energy, MJ/kg 160
73
Embodied Water, L/kg 290
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
54 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 260
67 to 680
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 24
12 to 18
Strength to Weight: Bending, points 21
13 to 17
Thermal Diffusivity, mm2/s 2.7
8.9
Thermal Shock Resistance, points 24
12 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.015
0 to 0.050
Chromium (Cr), % 14 to 18
0
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 0
65 to 71.6
Iron (Fe), % 0 to 3.0
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 14 to 17
0
Nickel (Ni), % 58.1 to 72
28 to 33
Phosphorus (P), % 0 to 0.040
0 to 0.2
Silicon (Si), % 0 to 0.080
0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0 to 0.7
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5