MakeItFrom.com
Menu (ESC)

N06603 Nickel vs. AWS ER90S-B9

N06603 nickel belongs to the nickel alloys classification, while AWS ER90S-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N06603 nickel and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 28
18
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
75
Tensile Strength: Ultimate (UTS), MPa 740
690
Tensile Strength: Yield (Proof), MPa 340
470

Thermal Properties

Latent Heat of Fusion, J/g 320
270
Melting Completion (Liquidus), °C 1340
1450
Melting Onset (Solidus), °C 1300
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 11
25
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 50
7.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 8.4
2.6
Embodied Energy, MJ/kg 120
37
Embodied Water, L/kg 300
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
110
Resilience: Unit (Modulus of Resilience), kJ/m3 300
570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
25
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 2.9
6.9
Thermal Shock Resistance, points 20
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 2.4 to 3.0
0 to 0.040
Carbon (C), % 0.2 to 0.4
0.070 to 0.13
Chromium (Cr), % 24 to 26
8.0 to 10.5
Copper (Cu), % 0 to 0.5
0 to 0.2
Iron (Fe), % 8.0 to 11
84.4 to 90.7
Manganese (Mn), % 0 to 0.15
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 57.7 to 65.6
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.2
0 to 0.010
Silicon (Si), % 0 to 0.5
0.15 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0.010 to 0.25
0
Vanadium (V), % 0
0.15 to 0.3
Yttrium (Y), % 0.010 to 0.15
0
Zinc (Zn), % 0.010 to 0.1
0
Residuals, % 0
0 to 0.5