MakeItFrom.com
Menu (ESC)

N06603 Nickel vs. C70260 Copper

N06603 nickel belongs to the nickel alloys classification, while C70260 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N06603 nickel and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 28
9.5 to 19
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 480
320 to 450
Tensile Strength: Ultimate (UTS), MPa 740
520 to 760
Tensile Strength: Yield (Proof), MPa 340
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1340
1060
Melting Onset (Solidus), °C 1300
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 11
160
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
40 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
40 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 50
31
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 120
43
Embodied Water, L/kg 300
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 300
710 to 1810
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 25
16 to 24
Strength to Weight: Bending, points 22
16 to 21
Thermal Diffusivity, mm2/s 2.9
45
Thermal Shock Resistance, points 20
18 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 2.4 to 3.0
0
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.5
95.8 to 98.8
Iron (Fe), % 8.0 to 11
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 57.7 to 65.6
1.0 to 3.0
Phosphorus (P), % 0 to 0.2
0 to 0.010
Silicon (Si), % 0 to 0.5
0.2 to 0.7
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.010 to 0.25
0
Yttrium (Y), % 0.010 to 0.15
0
Zinc (Zn), % 0.010 to 0.1
0
Residuals, % 0
0 to 0.5