MakeItFrom.com
Menu (ESC)

N07716 Nickel vs. C11000 Copper

N07716 nickel belongs to the nickel alloys classification, while C11000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N07716 nickel and the bottom bar is C11000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
1.5 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 580
150 to 230
Tensile Strength: Ultimate (UTS), MPa 860
220 to 410
Tensile Strength: Yield (Proof), MPa 350
69 to 390

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1480
1080
Melting Onset (Solidus), °C 1430
1070
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
100
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
100

Otherwise Unclassified Properties

Base Metal Price, % relative 75
31
Density, g/cm3 8.5
9.0
Embodied Carbon, kg CO2/kg material 13
2.6
Embodied Energy, MJ/kg 190
41
Embodied Water, L/kg 280
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
6.1 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 300
21 to 640
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 28
6.8 to 13
Strength to Weight: Bending, points 24
9.0 to 14
Thermal Diffusivity, mm2/s 2.8
110
Thermal Shock Resistance, points 24
8.0 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0
99.9 to 100
Iron (Fe), % 0 to 11.3
0
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 7.0 to 9.5
0
Nickel (Ni), % 59 to 63
0
Niobium (Nb), % 2.8 to 4.0
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 1.0 to 1.6
0
Residuals, % 0
0 to 0.1