MakeItFrom.com
Menu (ESC)

N07750 Nickel vs. C48500 Brass

N07750 nickel belongs to the nickel alloys classification, while C48500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N07750 nickel and the bottom bar is C48500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 25
13 to 40
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
39
Shear Strength, MPa 770
250 to 300
Tensile Strength: Ultimate (UTS), MPa 1200
400 to 500
Tensile Strength: Yield (Proof), MPa 820
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 960
120
Melting Completion (Liquidus), °C 1430
900
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 60
23
Density, g/cm3 8.4
8.1
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 260
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
56 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
120 to 500
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 40
14 to 17
Strength to Weight: Bending, points 30
15 to 17
Thermal Diffusivity, mm2/s 3.3
38
Thermal Shock Resistance, points 36
13 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 1.0
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 14 to 17
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
59 to 62
Iron (Fe), % 5.0 to 9.0
0 to 0.1
Lead (Pb), % 0
1.3 to 2.2
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 70 to 77.7
0
Niobium (Nb), % 0.7 to 1.2
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 1.0
Titanium (Ti), % 2.3 to 2.8
0
Zinc (Zn), % 0
34.3 to 39.2
Residuals, % 0
0 to 0.4