MakeItFrom.com
Menu (ESC)

N07750 Nickel vs. C48600 Brass

N07750 nickel belongs to the nickel alloys classification, while C48600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N07750 nickel and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 25
20 to 25
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
39
Shear Strength, MPa 770
180 to 230
Tensile Strength: Ultimate (UTS), MPa 1200
280 to 360
Tensile Strength: Yield (Proof), MPa 820
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 960
120
Melting Completion (Liquidus), °C 1430
900
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 13
110
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
28

Otherwise Unclassified Properties

Base Metal Price, % relative 60
24
Density, g/cm3 8.4
8.1
Embodied Carbon, kg CO2/kg material 10
2.8
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 260
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
61 to 140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 40
9.5 to 12
Strength to Weight: Bending, points 30
12 to 14
Thermal Diffusivity, mm2/s 3.3
36
Thermal Shock Resistance, points 36
9.3 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 1.0
0
Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 14 to 17
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
59 to 62
Iron (Fe), % 5.0 to 9.0
0
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 70 to 77.7
0
Niobium (Nb), % 0.7 to 1.2
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.3 to 1.5
Titanium (Ti), % 2.3 to 2.8
0
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4