MakeItFrom.com
Menu (ESC)

N07750 Nickel vs. C92200 Bronze

N07750 nickel belongs to the nickel alloys classification, while C92200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N07750 nickel and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
25
Fatigue Strength, MPa 520
76
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 1200
280
Tensile Strength: Yield (Proof), MPa 820
140

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1430
990
Melting Onset (Solidus), °C 1400
830
Specific Heat Capacity, J/kg-K 460
370
Thermal Conductivity, W/m-K 13
70
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
14
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 60
32
Density, g/cm3 8.4
8.7
Embodied Carbon, kg CO2/kg material 10
3.2
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 260
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
58
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
87
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 40
8.9
Strength to Weight: Bending, points 30
11
Thermal Diffusivity, mm2/s 3.3
21
Thermal Shock Resistance, points 36
9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 1.0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 14 to 17
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
86 to 90
Iron (Fe), % 5.0 to 9.0
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 70 to 77.7
0 to 1.0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.050
Tin (Sn), % 0
5.5 to 6.5
Titanium (Ti), % 2.3 to 2.8
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.7