MakeItFrom.com
Menu (ESC)

N07752 Nickel vs. EN AC-43100 Aluminum

N07752 nickel belongs to the nickel alloys classification, while EN AC-43100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07752 nickel and the bottom bar is EN AC-43100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 22
1.1 to 2.5
Fatigue Strength, MPa 450
68 to 76
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 1120
180 to 270
Tensile Strength: Yield (Proof), MPa 740
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 310
540
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1380
600
Melting Onset (Solidus), °C 1330
590
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
37
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 10
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 260
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 1450
66 to 360
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 37
20 to 29
Strength to Weight: Bending, points 29
28 to 36
Thermal Diffusivity, mm2/s 3.2
60
Thermal Shock Resistance, points 34
8.6 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 1.0
86.9 to 90.8
Boron (B), % 0 to 0.0070
0
Carbon (C), % 0.020 to 0.060
0
Chromium (Cr), % 14.5 to 17
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 5.0 to 9.0
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.45
Nickel (Ni), % 70 to 77.1
0 to 0.050
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.0080
0
Silicon (Si), % 0 to 0.5
9.0 to 11
Sulfur (S), % 0 to 0.0030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 2.3 to 2.8
0 to 0.15
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.050
0 to 0.1
Residuals, % 0
0 to 0.15