MakeItFrom.com
Menu (ESC)

N07752 Nickel vs. EN AC-45100 Aluminum

N07752 nickel belongs to the nickel alloys classification, while EN AC-45100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07752 nickel and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 22
1.0 to 2.8
Fatigue Strength, MPa 450
82 to 99
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 1120
300 to 360
Tensile Strength: Yield (Proof), MPa 740
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 310
470
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1380
630
Melting Onset (Solidus), °C 1330
550
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
95

Otherwise Unclassified Properties

Base Metal Price, % relative 60
10
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 10
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 260
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 1450
290 to 710
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 37
30 to 35
Strength to Weight: Bending, points 29
35 to 39
Thermal Diffusivity, mm2/s 3.2
54
Thermal Shock Resistance, points 34
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 1.0
88 to 92.8
Boron (B), % 0 to 0.0070
0
Carbon (C), % 0.020 to 0.060
0
Chromium (Cr), % 14.5 to 17
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.5
2.6 to 3.6
Iron (Fe), % 5.0 to 9.0
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.55
Nickel (Ni), % 70 to 77.1
0 to 0.1
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.0080
0
Silicon (Si), % 0 to 0.5
4.5 to 6.0
Sulfur (S), % 0 to 0.0030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 2.3 to 2.8
0 to 0.25
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.050
0 to 0.2
Residuals, % 0
0 to 0.15