MakeItFrom.com
Menu (ESC)

N07752 Nickel vs. C11000 Copper

N07752 nickel belongs to the nickel alloys classification, while C11000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N07752 nickel and the bottom bar is C11000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
1.5 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 710
150 to 230
Tensile Strength: Ultimate (UTS), MPa 1120
220 to 410
Tensile Strength: Yield (Proof), MPa 740
69 to 390

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 960
200
Melting Completion (Liquidus), °C 1380
1080
Melting Onset (Solidus), °C 1330
1070
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 13
390
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
100
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
100

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.4
9.0
Embodied Carbon, kg CO2/kg material 10
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 260
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
6.1 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 1450
21 to 640
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 37
6.8 to 13
Strength to Weight: Bending, points 29
9.0 to 14
Thermal Diffusivity, mm2/s 3.2
110
Thermal Shock Resistance, points 34
8.0 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 1.0
0
Boron (B), % 0 to 0.0070
0
Carbon (C), % 0.020 to 0.060
0
Chromium (Cr), % 14.5 to 17
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.5
99.9 to 100
Iron (Fe), % 5.0 to 9.0
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 70 to 77.1
0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.0080
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0030
0
Titanium (Ti), % 2.3 to 2.8
0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0
0 to 0.1