MakeItFrom.com
Menu (ESC)

N07752 Nickel vs. C19500 Copper

N07752 nickel belongs to the nickel alloys classification, while C19500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N07752 nickel and the bottom bar is C19500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
2.3 to 38
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Shear Strength, MPa 710
260 to 360
Tensile Strength: Ultimate (UTS), MPa 1120
380 to 640
Tensile Strength: Yield (Proof), MPa 740
120 to 600

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 960
200
Melting Completion (Liquidus), °C 1380
1090
Melting Onset (Solidus), °C 1330
1090
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 13
200
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
50 to 56
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
50 to 57

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 260
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
14 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1450
59 to 1530
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 37
12 to 20
Strength to Weight: Bending, points 29
13 to 18
Thermal Diffusivity, mm2/s 3.2
58
Thermal Shock Resistance, points 34
13 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 1.0
0 to 0.020
Boron (B), % 0 to 0.0070
0
Carbon (C), % 0.020 to 0.060
0
Chromium (Cr), % 14.5 to 17
0
Cobalt (Co), % 0 to 0.050
0.3 to 1.3
Copper (Cu), % 0 to 0.5
94.9 to 98.6
Iron (Fe), % 5.0 to 9.0
1.0 to 2.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 70 to 77.1
0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.0080
0.010 to 0.35
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0030
0
Tin (Sn), % 0
0.1 to 1.0
Titanium (Ti), % 2.3 to 2.8
0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.050
0 to 0.2
Residuals, % 0
0 to 0.2