MakeItFrom.com
Menu (ESC)

N07752 Nickel vs. C64700 Bronze

N07752 nickel belongs to the nickel alloys classification, while C64700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N07752 nickel and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
9.0
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Shear Strength, MPa 710
390
Tensile Strength: Ultimate (UTS), MPa 1120
660
Tensile Strength: Yield (Proof), MPa 740
560

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Maximum Temperature: Mechanical, °C 960
200
Melting Completion (Liquidus), °C 1380
1090
Melting Onset (Solidus), °C 1330
1030
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 13
210
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
38

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 260
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
57
Resilience: Unit (Modulus of Resilience), kJ/m3 1450
1370
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 37
21
Strength to Weight: Bending, points 29
19
Thermal Diffusivity, mm2/s 3.2
59
Thermal Shock Resistance, points 34
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 1.0
0
Boron (B), % 0 to 0.0070
0
Carbon (C), % 0.020 to 0.060
0
Chromium (Cr), % 14.5 to 17
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.5
95.8 to 98
Iron (Fe), % 5.0 to 9.0
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 70 to 77.1
1.6 to 2.2
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.0080
0
Silicon (Si), % 0 to 0.5
0.4 to 0.8
Sulfur (S), % 0 to 0.0030
0
Titanium (Ti), % 2.3 to 2.8
0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.050
0 to 0.5
Residuals, % 0
0 to 0.5