MakeItFrom.com
Menu (ESC)

N07752 Nickel vs. C85700 Brass

N07752 nickel belongs to the nickel alloys classification, while C85700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N07752 nickel and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 22
17
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 1120
310
Tensile Strength: Yield (Proof), MPa 740
110

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 960
120
Melting Completion (Liquidus), °C 1380
940
Melting Onset (Solidus), °C 1330
910
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 13
84
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
22
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
25

Otherwise Unclassified Properties

Base Metal Price, % relative 60
24
Density, g/cm3 8.4
8.0
Embodied Carbon, kg CO2/kg material 10
2.8
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 260
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
41
Resilience: Unit (Modulus of Resilience), kJ/m3 1450
59
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 37
11
Strength to Weight: Bending, points 29
13
Thermal Diffusivity, mm2/s 3.2
27
Thermal Shock Resistance, points 34
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 1.0
0 to 0.8
Boron (B), % 0 to 0.0070
0
Carbon (C), % 0.020 to 0.060
0
Chromium (Cr), % 14.5 to 17
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.5
58 to 64
Iron (Fe), % 5.0 to 9.0
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 70 to 77.1
0 to 1.0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.0080
0
Silicon (Si), % 0 to 0.5
0 to 0.050
Sulfur (S), % 0 to 0.0030
0
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 2.3 to 2.8
0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.050
32 to 40
Residuals, % 0
0 to 1.3