MakeItFrom.com
Menu (ESC)

N07752 Nickel vs. C86800 Bronze

N07752 nickel belongs to the nickel alloys classification, while C86800 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N07752 nickel and the bottom bar is C86800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
22
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 1120
570
Tensile Strength: Yield (Proof), MPa 740
260

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 960
140
Melting Completion (Liquidus), °C 1380
900
Melting Onset (Solidus), °C 1330
880
Specific Heat Capacity, J/kg-K 460
400
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 60
24
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 10
3.0
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 260
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1450
310
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 37
20
Strength to Weight: Bending, points 29
19
Thermal Shock Resistance, points 34
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 1.0
0 to 2.0
Boron (B), % 0 to 0.0070
0
Carbon (C), % 0.020 to 0.060
0
Chromium (Cr), % 14.5 to 17
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.5
53.5 to 57
Iron (Fe), % 5.0 to 9.0
1.0 to 2.5
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
2.5 to 4.0
Nickel (Ni), % 70 to 77.1
2.5 to 4.0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.0080
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0030
0
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 2.3 to 2.8
0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.050
28.3 to 40.5
Residuals, % 0
0 to 1.0