MakeItFrom.com
Menu (ESC)

N07752 Nickel vs. C99750 Brass

N07752 nickel belongs to the nickel alloys classification, while C99750 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N07752 nickel and the bottom bar is C99750 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
130
Elongation at Break, % 22
20 to 30
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
48
Tensile Strength: Ultimate (UTS), MPa 1120
450 to 520
Tensile Strength: Yield (Proof), MPa 740
220 to 280

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 960
160
Melting Completion (Liquidus), °C 1380
840
Melting Onset (Solidus), °C 1330
820
Specific Heat Capacity, J/kg-K 460
410
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 60
23
Density, g/cm3 8.4
8.1
Embodied Carbon, kg CO2/kg material 10
3.1
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 260
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1450
190 to 300
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 23
21
Strength to Weight: Axial, points 37
15 to 18
Strength to Weight: Bending, points 29
16 to 18
Thermal Shock Resistance, points 34
13 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 1.0
0.25 to 3.0
Boron (B), % 0 to 0.0070
0
Carbon (C), % 0.020 to 0.060
0
Chromium (Cr), % 14.5 to 17
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.5
55 to 61
Iron (Fe), % 5.0 to 9.0
0 to 1.0
Lead (Pb), % 0
0.5 to 2.5
Manganese (Mn), % 0 to 1.0
17 to 23
Nickel (Ni), % 70 to 77.1
0 to 5.0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.0080
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0030
0
Titanium (Ti), % 2.3 to 2.8
0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.050
17 to 23
Residuals, % 0
0 to 0.3