MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. 213.0 Aluminum

N07776 nickel belongs to the nickel alloys classification, while 213.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07776 nickel and the bottom bar is 213.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 39
1.5
Fatigue Strength, MPa 220
93
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 79
28
Tensile Strength: Ultimate (UTS), MPa 700
190
Tensile Strength: Yield (Proof), MPa 270
130

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 970
170
Melting Completion (Liquidus), °C 1550
670
Melting Onset (Solidus), °C 1500
480
Specific Heat Capacity, J/kg-K 430
850
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 85
11
Density, g/cm3 8.6
3.2
Embodied Carbon, kg CO2/kg material 15
7.7
Embodied Energy, MJ/kg 210
140
Embodied Water, L/kg 270
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 180
120
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
44
Strength to Weight: Axial, points 22
16
Strength to Weight: Bending, points 20
23
Thermal Shock Resistance, points 20
8.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 2.0
83.5 to 93
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0
Copper (Cu), % 0
6.0 to 8.0
Iron (Fe), % 0 to 24.5
0 to 1.2
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.6
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0 to 0.35
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
1.0 to 3.0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0 to 0.25
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 2.5
Residuals, % 0
0 to 0.5