MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. A206.0 Aluminum

N07776 nickel belongs to the nickel alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07776 nickel and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 39
4.2 to 10
Fatigue Strength, MPa 220
90 to 180
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 470
260
Tensile Strength: Ultimate (UTS), MPa 700
390 to 440
Tensile Strength: Yield (Proof), MPa 270
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 970
170
Melting Completion (Liquidus), °C 1550
670
Melting Onset (Solidus), °C 1500
550
Specific Heat Capacity, J/kg-K 430
880
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 85
11
Density, g/cm3 8.6
3.0
Embodied Carbon, kg CO2/kg material 15
8.0
Embodied Energy, MJ/kg 210
150
Embodied Water, L/kg 270
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 180
440 to 1000
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 22
36 to 41
Strength to Weight: Bending, points 20
39 to 43
Thermal Shock Resistance, points 20
17 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 2.0
93.9 to 95.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 0 to 24.5
0 to 0.1
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0 to 0.050
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.050
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 1.0
0.15 to 0.3
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15