MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. C355.0 Aluminum

N07776 nickel belongs to the nickel alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07776 nickel and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 39
2.7 to 3.8
Fatigue Strength, MPa 220
76 to 84
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 700
290 to 310
Tensile Strength: Yield (Proof), MPa 270
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 970
170
Melting Completion (Liquidus), °C 1550
620
Melting Onset (Solidus), °C 1500
570
Specific Heat Capacity, J/kg-K 430
900
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 15
8.0
Embodied Energy, MJ/kg 210
150
Embodied Water, L/kg 270
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 180
290 to 380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 22
30 to 32
Strength to Weight: Bending, points 20
36 to 37
Thermal Shock Resistance, points 20
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 2.0
91.7 to 94.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0
Copper (Cu), % 0
1.0 to 1.5
Iron (Fe), % 0 to 24.5
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
4.5 to 5.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0 to 0.2
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15