MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. C19700 Copper

N07776 nickel belongs to the nickel alloys classification, while C19700 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is N07776 nickel and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 39
2.4 to 13
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 79
43
Shear Strength, MPa 470
240 to 300
Tensile Strength: Ultimate (UTS), MPa 700
400 to 530
Tensile Strength: Yield (Proof), MPa 270
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 970
200
Melting Completion (Liquidus), °C 1550
1090
Melting Onset (Solidus), °C 1500
1040
Specific Heat Capacity, J/kg-K 430
390
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 85
30
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 15
2.6
Embodied Energy, MJ/kg 210
41
Embodied Water, L/kg 270
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 180
460 to 1160
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 22
12 to 16
Strength to Weight: Bending, points 20
14 to 16
Thermal Shock Resistance, points 20
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 2.0
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0
97.4 to 99.59
Iron (Fe), % 0 to 24.5
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0 to 0.050
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0.1 to 0.4
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 1.0
0
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2