MakeItFrom.com
Menu (ESC)

N10001 Nickel vs. 6262 Aluminum

N10001 nickel belongs to the nickel alloys classification, while 6262 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10001 nickel and the bottom bar is 6262 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
68
Elongation at Break, % 45
4.6 to 10
Fatigue Strength, MPa 300
90 to 110
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 84
26
Shear Strength, MPa 550
170 to 240
Tensile Strength: Ultimate (UTS), MPa 780
290 to 390
Tensile Strength: Yield (Proof), MPa 350
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 900
160
Melting Completion (Liquidus), °C 1620
650
Melting Onset (Solidus), °C 1570
580
Specific Heat Capacity, J/kg-K 390
890
Thermal Expansion, µm/m-K 10
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
10
Density, g/cm3 9.2
2.8
Embodied Carbon, kg CO2/kg material 15
8.3
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 260
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
17 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 280
530 to 940
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
48
Strength to Weight: Axial, points 24
29 to 39
Strength to Weight: Bending, points 21
35 to 42
Thermal Shock Resistance, points 25
13 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94.7 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 1.0
0.040 to 0.14
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 4.0 to 6.0
0 to 0.7
Lead (Pb), % 0
0.4 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 58 to 69.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Vanadium (V), % 0.2 to 0.4
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15