MakeItFrom.com
Menu (ESC)

N10003 Nickel vs. S31254 Stainless Steel

N10003 nickel belongs to the nickel alloys classification, while S31254 stainless steel belongs to the iron alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N10003 nickel and the bottom bar is S31254 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 42
40
Fatigue Strength, MPa 260
290
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 80
80
Shear Strength, MPa 540
490
Tensile Strength: Ultimate (UTS), MPa 780
720
Tensile Strength: Yield (Proof), MPa 320
330

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Maximum Temperature: Mechanical, °C 930
1090
Melting Completion (Liquidus), °C 1520
1460
Melting Onset (Solidus), °C 1460
1420
Specific Heat Capacity, J/kg-K 420
460
Thermal Conductivity, W/m-K 12
14
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 70
28
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 13
5.5
Embodied Energy, MJ/kg 180
74
Embodied Water, L/kg 270
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
240
Resilience: Unit (Modulus of Resilience), kJ/m3 240
270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 3.1
3.8
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.040 to 0.080
0 to 0.020
Chromium (Cr), % 6.0 to 8.0
19.5 to 20.5
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0 to 0.35
0.5 to 1.0
Iron (Fe), % 0 to 5.0
51.4 to 56.3
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 15 to 18
6.0 to 6.5
Nickel (Ni), % 64.8 to 79
17.5 to 18.5
Nitrogen (N), % 0
0.18 to 0.22
Phosphorus (P), % 0 to 0.015
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.020
0 to 0.010
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0 to 0.5
0