MakeItFrom.com
Menu (ESC)

N10276 Nickel vs. EN 1.4607 Stainless Steel

N10276 nickel belongs to the nickel alloys classification, while EN 1.4607 stainless steel belongs to the iron alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N10276 nickel and the bottom bar is EN 1.4607 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 47
21
Fatigue Strength, MPa 280
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 84
77
Shear Strength, MPa 550
330
Tensile Strength: Ultimate (UTS), MPa 780
530
Tensile Strength: Yield (Proof), MPa 320
270

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 960
930
Melting Completion (Liquidus), °C 1370
1440
Melting Onset (Solidus), °C 1320
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 9.1
18
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.3
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 70
13
Density, g/cm3 9.1
7.7
Embodied Carbon, kg CO2/kg material 13
2.8
Embodied Energy, MJ/kg 170
40
Embodied Water, L/kg 280
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
91
Resilience: Unit (Modulus of Resilience), kJ/m3 230
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 2.4
4.9
Thermal Shock Resistance, points 23
19

Alloy Composition

Carbon (C), % 0 to 0.010
0 to 0.030
Chromium (Cr), % 14.5 to 16.5
18.5 to 20.5
Cobalt (Co), % 0 to 2.5
0
Iron (Fe), % 4.0 to 7.0
75.6 to 81.4
Manganese (Mn), % 0 to 0.010
0 to 1.0
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 63.5
0
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.080
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.8
Tungsten (W), % 3.0 to 4.5
0
Vanadium (V), % 0 to 0.35
0