MakeItFrom.com
Menu (ESC)

N10276 Nickel vs. EN AC-43300 Aluminum

N10276 nickel belongs to the nickel alloys classification, while EN AC-43300 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10276 nickel and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 47
3.4 to 6.7
Fatigue Strength, MPa 280
76 to 77
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
27
Tensile Strength: Ultimate (UTS), MPa 780
280 to 290
Tensile Strength: Yield (Proof), MPa 320
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
540
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1370
600
Melting Onset (Solidus), °C 1320
590
Specific Heat Capacity, J/kg-K 410
910
Thermal Conductivity, W/m-K 9.1
140
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.3
140

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 9.1
2.5
Embodied Carbon, kg CO2/kg material 13
7.9
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 280
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 230
300 to 370
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 22
54
Strength to Weight: Axial, points 24
31 to 32
Strength to Weight: Bending, points 21
37 to 38
Thermal Diffusivity, mm2/s 2.4
59
Thermal Shock Resistance, points 23
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
88.9 to 90.8
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 14.5 to 16.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 4.0 to 7.0
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 0.010
0 to 0.1
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 63.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.080
9.0 to 10
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 3.0 to 4.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1