MakeItFrom.com
Menu (ESC)

N10629 Nickel vs. SAE-AISI 1020 Steel

N10629 nickel belongs to the nickel alloys classification, while SAE-AISI 1020 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N10629 nickel and the bottom bar is SAE-AISI 1020 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
190
Elongation at Break, % 45
17 to 28
Fatigue Strength, MPa 340
180 to 250
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 83
73
Shear Strength, MPa 600
280
Tensile Strength: Ultimate (UTS), MPa 860
430 to 460
Tensile Strength: Yield (Proof), MPa 400
240 to 380

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 910
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Expansion, µm/m-K 10
12

Otherwise Unclassified Properties

Base Metal Price, % relative 75
1.8
Density, g/cm3 9.2
7.9
Embodied Carbon, kg CO2/kg material 15
1.4
Embodied Energy, MJ/kg 190
18
Embodied Water, L/kg 270
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
72 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 360
150 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 26
15 to 16
Strength to Weight: Bending, points 22
16 to 17
Thermal Shock Resistance, points 27
13 to 14

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0
Carbon (C), % 0 to 0.010
0.18 to 0.23
Chromium (Cr), % 0.5 to 1.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 1.0 to 6.0
99.08 to 99.52
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 65 to 72.4
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0 to 0.010
0 to 0.050