MakeItFrom.com
Menu (ESC)

N10665 Nickel vs. C90200 Bronze

N10665 nickel belongs to the nickel alloys classification, while C90200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N10665 nickel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 45
30
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 84
41
Tensile Strength: Ultimate (UTS), MPa 860
260
Tensile Strength: Yield (Proof), MPa 400
110

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 900
180
Melting Completion (Liquidus), °C 1620
1050
Melting Onset (Solidus), °C 1570
880
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 11
62
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
13
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
13

Otherwise Unclassified Properties

Base Metal Price, % relative 75
34
Density, g/cm3 9.3
8.8
Embodied Carbon, kg CO2/kg material 15
3.3
Embodied Energy, MJ/kg 200
53
Embodied Water, L/kg 270
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
63
Resilience: Unit (Modulus of Resilience), kJ/m3 360
55
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 22
18
Strength to Weight: Axial, points 26
8.3
Strength to Weight: Bending, points 22
10
Thermal Diffusivity, mm2/s 3.1
19
Thermal Shock Resistance, points 27
9.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 0 to 1.0
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
91 to 94
Iron (Fe), % 0 to 2.0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 64.8 to 74
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6