MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. C95400 Bronze

N10675 nickel belongs to the nickel alloys classification, while C95400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N10675 nickel and the bottom bar is C95400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 47
8.1 to 16
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 85
43
Tensile Strength: Ultimate (UTS), MPa 860
600 to 710
Tensile Strength: Yield (Proof), MPa 400
240 to 360

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 910
230
Melting Completion (Liquidus), °C 1420
1040
Melting Onset (Solidus), °C 1370
1030
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 11
59
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
13
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
14

Otherwise Unclassified Properties

Base Metal Price, % relative 80
27
Density, g/cm3 9.3
8.2
Embodied Carbon, kg CO2/kg material 16
3.2
Embodied Energy, MJ/kg 210
53
Embodied Water, L/kg 280
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
48 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 350
250 to 560
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 22
20
Strength to Weight: Axial, points 26
20 to 24
Strength to Weight: Bending, points 22
19 to 22
Thermal Diffusivity, mm2/s 3.1
16
Thermal Shock Resistance, points 26
21 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
10 to 11.5
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 1.0 to 3.0
0
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.2
83 to 87
Iron (Fe), % 1.0 to 3.0
3.0 to 5.0
Manganese (Mn), % 0 to 3.0
0 to 0.5
Molybdenum (Mo), % 27 to 32
0
Nickel (Ni), % 51.3 to 71
0 to 1.5
Niobium (Nb), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0
Tantalum (Ta), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 3.0
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5