MakeItFrom.com
Menu (ESC)

R30003 Cobalt vs. AWS E316LMn

R30003 cobalt belongs to the cobalt alloys classification, while AWS E316LMn belongs to the iron alloys. They have 55% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is R30003 cobalt and the bottom bar is AWS E316LMn.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 10 to 73
23
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 83
79
Tensile Strength: Ultimate (UTS), MPa 970 to 1720
620

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1440
1370
Specific Heat Capacity, J/kg-K 450
470
Thermal Expansion, µm/m-K 13
14

Otherwise Unclassified Properties

Base Metal Price, % relative 95
24
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 8.0
4.6
Embodied Energy, MJ/kg 110
64
Embodied Water, L/kg 400
180

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 32 to 57
22
Strength to Weight: Bending, points 26 to 38
20
Thermal Shock Resistance, points 26 to 45
15

Alloy Composition

Boron (B), % 0 to 0.1
0
Carbon (C), % 0 to 0.15
0 to 0.040
Chromium (Cr), % 19 to 21
18 to 21
Cobalt (Co), % 39 to 41
0
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 10 to 20.5
47.5 to 59.4
Manganese (Mn), % 1.5 to 2.5
5.0 to 8.0
Molybdenum (Mo), % 6.0 to 8.0
2.5 to 3.5
Nickel (Ni), % 14 to 16
15 to 18
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 1.2
0 to 0.9
Sulfur (S), % 0 to 0.015
0 to 0.030