MakeItFrom.com
Menu (ESC)

R30035 Cobalt vs. C10500 Copper

R30035 cobalt belongs to the cobalt alloys classification, while C10500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is R30035 cobalt and the bottom bar is C10500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220 to 230
120
Elongation at Break, % 9.0 to 46
2.8 to 51
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84 to 89
43
Tensile Strength: Ultimate (UTS), MPa 900 to 1900
220 to 400
Tensile Strength: Yield (Proof), MPa 300 to 1650
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1320
1080
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
100
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
100

Otherwise Unclassified Properties

Base Metal Price, % relative 100
32
Density, g/cm3 8.7
9.0
Embodied Carbon, kg CO2/kg material 10
2.6
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 410
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 320
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 5920
24 to 680
Stiffness to Weight: Axial, points 14 to 15
7.2
Stiffness to Weight: Bending, points 23 to 24
18
Strength to Weight: Axial, points 29 to 61
6.8 to 12
Strength to Weight: Bending, points 24 to 39
9.1 to 14
Thermal Diffusivity, mm2/s 3.0
110
Thermal Shock Resistance, points 23 to 46
7.8 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Boron (B), % 0 to 0.015
0
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 29.1 to 39
0
Copper (Cu), % 0
99.89 to 99.966
Iron (Fe), % 0 to 1.0
0
Manganese (Mn), % 0 to 0.15
0
Molybdenum (Mo), % 9.0 to 10.5
0
Nickel (Ni), % 33 to 37
0
Oxygen (O), % 0
0 to 0.0010
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.15
0
Silver (Ag), % 0
0.034 to 0.060
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0
Residuals, % 0
0 to 0.050