MakeItFrom.com
Menu (ESC)

R30075 Cobalt vs. CC140C Copper

R30075 cobalt belongs to the cobalt alloys classification, while CC140C copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is R30075 cobalt and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210 to 250
120
Elongation at Break, % 12
11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 82 to 98
44
Tensile Strength: Ultimate (UTS), MPa 780 to 1280
340
Tensile Strength: Yield (Proof), MPa 480 to 840
230

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Melting Completion (Liquidus), °C 1360
1100
Melting Onset (Solidus), °C 1290
1040
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 13
310
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
77
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
78

Otherwise Unclassified Properties

Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 8.1
2.6
Embodied Energy, MJ/kg 110
41
Embodied Water, L/kg 530
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 140
34
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 1410
220
Stiffness to Weight: Axial, points 14 to 17
7.3
Stiffness to Weight: Bending, points 24 to 25
18
Strength to Weight: Axial, points 26 to 42
10
Strength to Weight: Bending, points 22 to 31
12
Thermal Diffusivity, mm2/s 3.5
89
Thermal Shock Resistance, points 21 to 29
12

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.35
0
Chromium (Cr), % 27 to 30
0.4 to 1.2
Cobalt (Co), % 58.7 to 68
0
Copper (Cu), % 0
98.8 to 99.6
Iron (Fe), % 0 to 0.75
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0 to 0.2
0